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1. STATEMENT OF THE PROBLEM STUDIED 
 
This project funded by ARO was devoted to the optical properties of coupled spherical cavities. 
The systems of coupled cavities attracted an increasing interest of photonic community due to 
novel mechanisms of coupling and propagation of light in such structures. These include 
configuration interaction and coherent propagation properties, effects of localization of light in 
disordered lattices of cavities and many other interesting properties. This is a relatively broad 
area with many materials and structural designs used to create coupled cavities with the most 
popular designs based on using microrings and disks integrated on the same chip. The examples 
of such structures include high order filters1,2, coupled resonator optical waveguides3-6 (CROW), 
side-coupled integrated spaced sequences of resonators7 (SCISSOR) and more sophisticated8-13 
structures. Coupled cavities can also be obtained as periodically arranged defect states14-16 in 
photonic crystal platforms or in laterally patterned17 microcavity structures. Due to controllable 
dispersion relations for photons these structures can be used for developing chip-scale delay 
lines, spectral filters and sensor devices. 
 
One of the major requirements to the technology of such systems includes scalability to large 
number of uniform microresonators. The uniformity of cavities is extremely important for 
achieving efficient resonant coupling between the adjacent cavities. This however still remains a 
major challenge for modern technology2,6,18. Indeed, even best established techniques such as 
semiconductor CMOS-based fabrication18 provide random variations of the cavity sizes in ~0.1-
1% range. This means that the cavities with Q-factors >104 required for developing most of the 
applications are randomly detuned leading to large propagation losses in such structures. There 
are several techniques which can in principle be used for fine tuning of the individual resonances 
such as free carrier injection in p-i-n junctions in semiconductor structures19, use of electro-
optical20 or thermo-optical2,21 effects. However application of these techniques to a large number 
of resonators integrated on a single chip still remains a challenge.      
 
Another extremely important problem of coupled cavity systems is connected with developing 
efficient ways of coupling propagating waves from fibers, waveguides or open space to modes 
localized in individual cavities. This coupling is typically provided in evanescent regime in side-
coupled systems such as strip waveguide-to-microring19,20, tapered fiber-to-microtoroid21 or 
fiber-to-microsphere22 systems. Under critical coupling conditions the efficiency of coupling can 
be very high (above 90%) however it requires controlling the gap sizes between the 
fiber/waveguide and the cavity with nanometric accuracy. 
 
The PI of this project [VA] came to this area with a strong background in studies of synthetic 
opals23-28 which are 3D lattices of silica nanospheres. In addition the PI [VA] had an extensive 
experience in studies of photonic crystal waveguides29-34 and semiconductor microcavities35-38. 
This experience quite naturally led the PI and co-PIs to the idea of using dielectic microspheres 
with 3-20μm sizes as building blocks of more complicated coupled cavity structures. In these 
structures the light is confined in individual cavities due to whispering gallery modes (WGMs) 
with extremely high Q-factors. The optical transport was supposed to be possible due to some 
sort of evanescent coupling between these high Q cavities. These coupling phenomena have been 
extremely poorly studied at the time when we initiated this project. Some results have been 
obtained39 for coupling between identical spheres which have been selected on the basis of 
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spectroscopic characterization. The regime of critical coupling between an individual sphere and 
a tapered fiber has been observed22. However the coupling mechanisms between size-
mismatched spheres have been largely unknown.     
 
The experiments started in the PI’s lab in 2003 resulted in observation40 of the optical transport 
due to coupling between whispering gallery modes (WGMs) in touching polystyrene spheres. 
These results were published40 by the group of PI [VA] in 2004 in Applied Physics Letters. The 
scattering losses, however, were shown to be rather high (~3dB/sphere) in such circuits. These 
losses were explained by the role of cavities size disorder (~1%) leading to the random detuning 
between the cavities WGM eigenstates. 
 
Following this experimental work the PI [VA] in collaboration with the group of co-PI [WC] 
performed numerical modeling5 which showed that a highly efficient WGM-related transport 
with controllable dispersion can be obtained in a chain of microcylinders as a result of 
controlling the air gaps separating the cavities. In this work, however, as in all previous 
theoretical studies on this subject the cavities were assumed to be identical. 
 
These preliminary studies showed that the circuits of coupled spherical cavities are highly 
attractive for developing novel “mesomaterials” with controllable dispersion for photons. Unique 
property of these circuits highlighted in our proposal submitted to ARO is connected with a 
principal possibility to micromanipulate with individual cavities. This allows not only building 
arbitrary coupled cavity structures integrated on the same chip, but also selecting cavities with 
resonant properties of their WGMs which is a very important property for achieving highly 
efficient WGM transport. At the same time these studies were at very early stage, and many 
problems had to be solved in order to develop technology and applications of coupled 
microspheres. Our project submitted to ARO contained the following major objectives: 
 
• Developing techniques for the fabrication of coupled microspheres circuits to achieve 
monodispersity of microresonators and the precise control over their arrangement. This also 
includes developing methods of controlling the intersphere gaps in such structures. 
 
• Developing experimental studies of such circuits aimed at understanding of the mechanisms of 
optical transport in disordered systems of coupled microresonators. 
 
• Using highly accurate and efficient numerical 3D algorithms for modeling coupling and 
propagation effects. The focus of these studies was supposed to be on coupling between size-
mismatched cavities with detuned eigenstates. 
 
• Developing optoelectronic and sensing applications of such circuits. One of the major 
objectives was a reduction the scattering losses in such structures. 
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2. SUMMARY OF THE MOST IMPORTANT RESULTS 
 
2.1. The support of the project and its outcome 
 
The research on coupled microspheres was initiated5,40 by the PI [VA] and co-PIs [WC and 
MAH] in 2003. In the group of PI for the first two years this research was developed by a single 
graduate student supported by the DARPA funding obtained from our Optoelectronics Center. 
During last two years the group included one postdoc and two graduate students. The primary 
source of funding for this work was ARO grant W911NF-05-1-0529, Resonant Optical Circuits 
Based on Coupling Between Whispering Gallery Modes in Dielectric Microspheres, 10/01/05-
09/30/07, $150,000 (PI – Dr. V.N. Astratov). In addition, the modeling effort of this work was 
supported by a NSF grant CCF-0513179 obtained from Division of Computer and 
Communication Foundations, High Order Numerical Methods for Light Propagation in Micro-
Photonics, 07/01/05-06/30/08, $180,000. Jointly these ARO and NSF grants played a key role in 
obtaining results summarized below. 
 
During two years of ARO funding (10/01/05-09/30/07) the team of PI has published 5 journal 
articles41-45 in Applied Physics Letters, Optics Express and Optics Letters along with 6 referred 
conference proceedings46-51. In 2007 the PI organized and edited52 the Focus Issue of Optics 
Express devoted to Physics and Applications of Microresonators where one the papers44 resulted 
from this project was published. The PI was invited to give 6 invited talks53-58 at major 
international and national conferences based on the results of this work. During his sabbatical 
semester in 2006 he obtained Senior Visiting EPSRC Fellowship in the UK, University of 
Sheffield, and was invited to give 7 seminars in major European Universities: European 
Laboratory for Nonlinear Spectroscopy (LENZ) in Florence, Universities of St. Andrews, 
Southampton, Sheffield, Dortmund, Pavia and CoreCom Company (Milan) affiliated with Pirelli. 
In addition this work resulted in 6 contributed talks59-64 at major international and national 
meetings. 
 
Participation in this project provided the postdoctoral researches and students with many 
opportunities for further developing their careers both in academia and in DOD organizations. 
One of the PI’s students, Shashanka Ashili, defended Ph.D. thesis65 on the basis of the results 
obtained in this work. This student was awarded a postdoctoral Fellowship at the Biodesign and 
Innovation Program at the University of Missouri-Columbia in 2007. One of the postdoctoral 
associates, Dr. Andrey Kanaev, who was involved in theoretical modeling in 2005-06 became a 
contractor at Navy Research Laboratory in 2006. Another postdoctoral associate, Dr. Charles 
Sykes, involved in fabrication of elastomeric PDMS substrates in 2005 became an assistant 
professor at Tufts University. 
 
2.2. Research Findings 
 
For each objective we achieved major breakthroughs in this project. 
 
Technology. The techniques of self-assembly of microspheres in microflows are developed that 
allowed obtaining straight chains of more than 100 cavities43,46,47 in a touching position on the 
substrate. We developed an original technique42 of controlling the air gaps between the 
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microspheres with nanometric precision (~20nm) based on using stretchable elastomeric 
substrates. Using the technique of flow-assisted self-assembly we synthesized 3D lattices of 
coupled cavities44,46,49,51 with the thickness controllable from 1 to 100 monolayers. Due to 
developing techniques of manipulation with microspheres guided by their spectroscopic 
characterization we achieved supermonodispersive selection of cavities with uniformity ~0.1%. 
 
Experiment and Modeling. We developed many novel experimental techniques42-45 and 
numerical modeling techniques41,45 of studies the optical coupling phenomena in such structures. 
We significantly advanced the understanding of mechanisms of coupling between size-
mismatched cavities with detuned WGMs. The experimental and modeling results obtained in 
this project constitute its most notable accomplishments, and they are considered in Section 2.3. 
We achieved five major accomplishments in understanding of properties of such systems: 
(i) Modeling of WGM coupling41 in size-mismatched bispheres, 
(ii) Experimental studies of coupling in bispheres42 with controllable gaps, 
(iii) Observation of nanojet-induced modes43 in chains of coupled cavities, 
(iv) Developing concept of percolation of WGMs44 in 2D & 3D lattices of cavities, 
(v) Observation of WGMs45 in semiconductor micropillars.   
 
Applications. For nanojet-induced modes observed for the first time in this project we reported43 
attenuation ~0.5dB/sphere. It should be noted however that this attenuation is far from limit. In 
our most recent unpublished work66 we observed attenuation for these modes ~0.1dB/sphere. 
This level of attenuation is sufficiently small for developing novel photonic devices based on 
using nanojet-induced modes. Due to subwavelength sizes of photonic nanojet the chains of 
spherical cavities can be used as novel microprobes for laser surgery and biochemical sensing. 
On the other hand developing applications based on using WGMs in filter and sensor structures 
require selection of supermonodispersive cavities on a larger scale. We showed that the WGM 
percolation threshold should be achievable44 in close packed 3D lattices formed by cavities with 
Q~103 and with ~1% size dispersion. This allows developing next generation of resonant sensors 
and arrayed-resonator light emitting devices. The high-Q (20000) WGM resonances with small 
modal volumes V~0.3 μm3 observed45 in 4-5 μm Al(Ga)As/GaAs micropillars can be used in 
cavity quantum electrodynamics experiments with sources of single photons.   
 
2.3. Most Notable Accomplishments 
 
(i) Modeling of WGM coupling in size-mismatched bispheres 
      
Using numerical modeling, we observed41 new mechanism of optical coupling between spherical 
dielectric cavities with whispering gallery mode (WGM) resonances. This mechanism can be 
understood as a Fano resonance between a discrete state (true WGM excited in one of the 
spheres) and a continuum of “quasi”-WGMs with distorted shape which can be induced in the 
receiving sphere. It was demonstrated41 that the strength of coupling depends on energy detuning 
between WGMs in adjacent cavities. 
 
The central idea of our numerical studies41 of coupling phenomena is based on using one of the 
spheres as a source (S) of WGMs and calculating the EM energy deposited in a second receiving 
(R) sphere. Due to the fact that each resonator produces its own comb of uncoupled WGM 
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frequencies (see Figs. 1 (i) and 1 (j)), we were able to study coupling phenomena for situations 
with different detuning (Δ) between closest resonances as well as for different separations (d) 
between the S and R cavities, as illustrated in Figs. 1 (c) -1 (h). In touching case we observed the 
regime of strong coupling as evident from Figs. 1 (a) and 1 (b) due to the fact that the splitting 
between coupled components exceed the linewidth of individual resonances. The strongly 
coupled nature of peaks at 552.9 and 557.9 nm was verified by classical bonding and 
antibonding molecular states calculated at these wavelengths, as illustrated in Figs. 1 (a) and 1 
(b). Increasing the separation between the cavities leads to gradual transition to weak coupling, 
see Fig. 2 (a). As a measure of the total energy (ER) deposited in the R cavity we used the area 
under spectral peaks. A rough estimate of the coupling efficiency (η) was obtained by 
normalizing ER by similarly estimated energy (ES) in the S sphere: η=ER/ES. The results of 
calculating η  for different detuning Δ as a function of d are summarized in Fig. 2 (b). We 
showed that the coupling between detuned cavities with the efficiency η~0.1-0.2 can be 
considered as an example of forced oscillations driven by true WGM in S sphere causing the 
appearance of “quasi”-WGMs with distorted shape in R sphere. 
 
(ii) Experimental studies of coupling in bispheres with controllable gaps 
 
We developed a technique42 for controlling the separations between the cavities based on placing 
the spheres at the top of the stretchable substrate, as illustrated in Figs. 3 (a) and 3 (b). By 
calibrating the tensile strain (ΔL/L) in the substrate one can control the gap sizes between the 
microspheres with nanometric accuracy (~20nm) according to the formula: d = 
(ΔL/L)(DS+DR)/2, where DS(R) – diameters of two spheres (S and R) under study. The substrates 
were synthesized using a robust and inert material, namely polydimethylsiloxane (PDMS). To 
increase its elasticity and the adhesion of the spheres to its surface a smaller than normal 

Fig. 1. (a) Antibonding and (b) bonding states. (c-h) 
Spectral energy density in receiving (R) sphere for 
different gaps (d). (i,j) spectra of WGM eigentates. 
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concentration (~0.1) of cross-linker was used during the curing step of the manufacture of the 
PDMS substrate. As illustrated in Fig. 4 the experimental distance dependence of the coupling 
efficiency42 can be approximated by exponential law with ~0.3μm attenuation length for d < 
1μm. This behavior is in a good qualitative agreement with the results of theoretical modeling41 
performed for smaller (3μm and 2.4μm) spheres. A small level (η~0.02) of scattering detected 
from R sphere at d>1μm is related to an illumination effect produced by the S sphere. 
 
(iii) Observation of nanojet-induced modes in chains of coupled cavities 
 
Along with studies of WGM-related transport the group of PI observed43 a completely different 
nonresonant mechanism of the optical propagation due to periodical focusing effect produced by 
spheres operating as microlenses. It should be noted that the basic concept of focusing of plane 
waves by a single microsphere has been revisited67-69 recently. By using numerical modeling it 
has been demonstrated that each sphere produces a focused spot termed67 “nanoscale photonic 
jet”, with elongated shape and subwavelength lateral size. 
 
As illustrated in Figs. 5 (a) and 5 (b) we directly observed43,46,47,49 such nanojets in long chains of 
periodically coupled polystyrene microspheres. Such quasi-periodic “nanojet-induced modes” 
have two interesting properties which are very attractive in terms of developing applications of 
such systems in microphotonics and sensing. Firstly, the long chains of spheres provide a special 
type of mode conversion process that lead to formation of nanojets with extremely small lateral 
sizes. As shown in Fig. 5 (c), away from the source of light (beyond the first decade of spheres) 
the transverse size of the nanojets appears saturated at the level of ~0.7 μm, which represents the 
resolution limit of our setup. Secondly, the propagation losses of such nanojet-induced modes are 
very small away from the sources of light, as illustrated in Fig. 6 (a). It is seen that the 
attenuation in first few spheres adjacent to the source is several dB/sphere however away from 
the source the losses are reduced to ~0.5 dB per sphere. In our recent unpublished work we 
experimentally demonstrated66 that propagation losses can be smaller than 0.1 dB per sphere. 
The fundamental limit of losses for these modes is not known at present time. Our preliminary 
results66 of 3D FDTD modeling of propagation through the series of microspheres are illustrated 

Fig. 3. (a) Image of a bisphere, (b) Stretchable 
substrate for controlling d. (c) Spectroscopic setup.
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in Fig. 6 (b). The nanojets are exited by the plane wave illumination at the wavelength which is 
detuned from the WGM resonances. The field distributions show that the periodicity of nanojets 
actually corresponds to 2D, where D is sphere diameter. Thus, in our experiments we 
simultaneously excited two nanojet-induced modes shifted by D. The small size of nanojets in 
long chains of cavities combined with the low-loss broad band spectral transmission properties 
of such chains can be used for developing novel micro-probes with subwavelength spatial 
resolution that will be the subject of our future work. 
 
(iv) Developing concept of percolation of WGMs in 2D & 3D lattices of cavities 
 
A new concept of percolation of light44 through WGMs in 2D and 3D lattices of coupled 
microspheres was recently proposed by the PI and coworker. The 3D close-packed structures 
formed by 5 μm dye-doped (Green FL, Duke Scientific Corp.) polystyrene microspheres with 
~3% size dispersion were synthesized by the technique70 of hydrodynamic flow-assisted self-
assembly. As shown in Fig. 7 (a) the suspension of spheres was injected into a cell fabricated by 
sandwiching a mylar film with a rectangular hole between two glass substrates. Submicron 
scratches fabricated on the surface of the mylar film allowed the liquid to leak out whereas the 
spheres were trapped inside the cell.  The growth of the close-packed structure with ~1 cm2 area 
was accelerated under continuous sonication. The thickness (d) of the structure was controlled by 
the mylar films in 5 – 177 μm range. The technique of built-in sources of light employed in this 
work is schematically illustrated in Fig. 7 (c). The built-in source of WGMs is formed by the 
focused laser beam with the wavelength tuned to the center of the absorption band of polystyrene 
microspheres doped with green fluorescent dye. The intensity of the pump laser is almost 
completely (~90%) absorbed in first three layers of spheres giving rise to dye emission in 500-
600 nm range where the spheres are practically transparent. 

Fig. 5. Visualization of nanojet-induce modes 
in a locally excited chain of 2.9 μm spheres. (a) 
Image illustrating that three left spheres are 
pumped. (b) Scattering image illustrating 
propagation away from FL source. (c) Cross-
sectional width of bright spots illustrating 
narrowing of nanojets down to diffraction limit.   

(a) 

(b)

Fig. 6. (a) Intensity of nanojets measured 
along the chain formed by spheres with 
different sizes. (b) Pattern of periodical 
focusing in 5 μm spheres obtained by 
FDTD numerical modeling.  
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As illustrated in Fig. 8 at small pump intensities we observed44 maxima in the transmission 
spectra of such 3D samples determined by the inhomogeneously broadened individual WGM 
peaks. Most interestingly, with the increasing intensity of the pump each maximum is shown to 
split into a double-peak structure with the magnitude of splitting (~5nm) that is two times larger 
than the normal mode splitting which we directly measured from a dielectric bisphere formed by 
nearly identical 5 μm cavities. We interpret this result as a signature of coupling between 
multiple cavities with nearly resonant WGMs. The likely explanation of this effect is connected 
with well-known property of systems of resonant coupled cavities that form two peaks of the 
normalized group delay8 at the edges of the CROW transmission band. These peaks provide a 
distributed feedback for lasing thus explaining why this double peak structure is seen above the 
lasing threshold. This interpretation is additionally confirmed by the results of measurements of 
thickness dependence of the FL transmission spectra represented in Fig. 9. It is seen that the 
intensity of the peaks (in double-peak structures) is increasing at high levels of pumping with the 
increase of the thickness of the sample in the intermediate region from 12 μm to 25 μm whereas 
the intensity of the FL background is decreasing in the same region. Since the FL background 
propagates diffusively this result indicates that the WGM-related transport is more efficient than 
classical diffusion of light for such thicknesses. 
 
We developed44 an approach to understanding the optical transport properties of such systems 
based on the analogy with the bond percolation problem71,72 in percolation theory. In this 
approach, the lattice sites (spheres) are connected with optical “bonds” that are present with 
probability p depending on the cavities’ size dispersion (assuming p≈1 in the case of resonance 
between WGMs). Due to a 3% size disorder, the structures studied in this work are characterized 
with p~0.01, thus only small clusters of sites connected by bonds can form. However, by 
selecting more uniform spheres it should be possible to reach a percolation threshold (pc = 
0.1201635 for an fcc lattice71) where a giant cluster spans the entire network. This situation 
means that such lattices should become transparent for the WGM transport irrespective of the 

Fig. 7. (a) Sketch of the cell for the hydrodynamic flow-assisted self-assembly of microspheres, 
(b) SEM image of the top surface of the sample showing its polycrystalline structure, (c) 
experimental set up, (d) single dye-doped sphere transmission spectrum.  
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sample thickness. In comparison with single chains of cavities, 3D structures operating above the 
WGM percolation threshold can tolerate an order of magnitude larger dispersion of spheres sizes. 
The level of uniformity of spheres required for achieving such WGM percolation threshold 
depends on their mean size since smaller spheres have smaller Q-factors of their WGM 
resonances which are easier to overlap. We predict that the WGM percolation threshold should 
be achievable in close packed 3D lattices formed by cavities with ~103 Q-factors of WGMs and 
with ~1% size dispersion. As an example this situation can be realized using commercially 
available ~3 μm polystyrene spheres in air or using larger ~10 μm spheres in a liquid 
environment. Such systems can be used for developing next generation of resonant sensors, 
microspectrometers, and filters. 
 
(v) Observation of WGMs in semiconductor micropillars   
 
In this Section we present the results45 obtained during the PI’s sabbatical semester in spring 
2006 at the University of Sheffield, UK. In this work we observed WGMs in semiconductor 
micropillars which can be considered as an example of cylindrical cavities with the properties to 
some extent analogous to microspheres. The subject of these studies was devoted to coupling 
between emission of a layer of InAs quantum dots (QDs) grown at the center of the cavity and 
the photonic modes of the cavity. Previously only “photonic dot” states with 3D optical 
confinement have been observed in such cavities. Whispering gallery modes have been known 
for microdisks, but they have never been observed in micropillars where the cavity is surrounded 
with two Bragg mirrors in vertical direction. In our work45 we observed WGMs in micropillars 
for the first time and showed some advantages of these modes for developing cavity QED 
experiments. 
 

Fig.9. Thickness and pump dependences of transmission 
intensity of spectral peaks (red) and scattering 
background (black) in 3D lattices of spheres. 

Fig.8. Pump dependence of 
transmission spectra of 50μm thick 
lattice formed by 5μm spheres. 
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As illustrated in Fig. 10 we observed high quality (Q up to 20000) WGMs with small modal 
volumes V~0.3 μm3 in 4-5 μm Al(Ga)As/GaAs micropillars by employing an experimental 
geometry in which both excitation and collection of emission is in a direction normal to the 
sidewalls of the pillars. Similar WGM peaks were detected from the sidewalls of pillars with 
elliptical cross section, as illustrated in Fig. 11, for 2.6 × 1.6 μm2 pillars. The Q factors of the 
WGMs were found to be reduced in such small pillars down to Q~6000 but were still higher than 
that for photonic dot states (~4000) measured from the top Bragg mirror of the same pillars. As 
shown in Fig. 11 (c) we also performed a numerical modeling of the WGM spectra in 
micropillars and obtained an em amplitude maps for WGMs illustrated in Fig. 11 (b). As a result 
we showed45,48,50 that WGMs provide at least two times larger values of the figure of merit for 
strong coupling applications, Q/ V , compared to “photonic dot” states in pillars with 
comparable size. Such micropillars can be used as sources of single photons in cavity quantum 
electrodynamics experiments with potential applications in quantum information processing. 
 
The work on semiconductor micropillars is closely related to the project on spherical cavities due 
to the circular symmetry of the resonators leading to similar physical properties of WGMs. In 
particular it shows a principal possibility to fabricate and study properties of coupled 
micropillars which can be realized in a different material system at the Optical Center facilities 
in Charlotte. It was also important in terms of developing WGM modeling techniques in 
different structures. 
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2.4. Summary and Outlook 
 
In summary, we developed the technology of circuits of coupled microspheres including 
capabilities43,66 of fabrication of straight chains of more than 100 cavities and controlling42 the 
air gaps between the spheres with nanometric accuracy. We synthesized 3D lattices of coupled 
cavities44,49 with the well controllable thickness from one monolayer up to 100 monolayers of 
closely packed spherical cavities. Through numerical modeling effort we developed 
understanding of the mechanisms of optical coupling between cavities with detuned eigenstates41 
and predicted interesting novel properties of such coupling such as quasi-WGMs and Fano-type 
resonances. We experimentally realized42 this type of coupling in size-mismatched bispheres. 
We also studied light-matter coupling in semiconductor pillar systems45,48,50 where a material 
oscillator (QD) can interact with different types of photonic modes including “photonic dot” 
states and WGMs. We observed WGMs in semiconductor micropillars for the first time. We 
developed techniques of modeling41,45 of WGM peak positions, Q-factors and modal volumes in 
spherical and pillar cavities. The results of this numerical modeling were found to be in a very 
good agreement with the experimental data. 
 
Two accomplishments among these results seem to be particularly important for future projects 
in the context of developing novel photonic devices. One is connected with observation43 of 
“nanojet-induced modes” in chains of spherical cavities. These modes are very interesting due to 
subwavelength sizes of nanojets and small propagation losses. In our most recent unpublished 
work66 we observed propagation losses below 0.1dB/sphere. It is also important to note that these 
modes are much more tolerant to the presence of size disorder of cavities in comparison with 
WGMs. These small losses clearly open the prospect for device applications of such structures. 
One of the examples of such structures is connected with assembling microspheres inside a 
microcapillary tube that would create a mechanically supported system which can be used as a 
microprobe. Due to mechanical robustness, extremely tight focusing of the beam, high optical 
throughput and broad spectral transmission properties such microprobes would be useful in a 
variety of biomedical applications. 
 
Another result with a potential impact on technology of coupled cavity devices is connected with 
developing concept of percolation of light44 in disordered lattices of cavities. We predicted that 
the WGM percolation threshold should be achievable in close packed 3D lattices with ~103 Q-
factors of WGMs with ~1% size dispersion. As an example this situation can be realized by 
using commercially available ~3 μm polystyrene spheres in air or by using enlarged (~10 μm) 
spheres in a liquid environment. On the basis of our results44 it seems feasible to achieve 
criticality of coupling in the latter case. Such structures of critically coupled cavities with 
percolative WGM transport can be used for multi wavelength detection of biochemical-binding 
events at the liquid-sphere interface. 
 
A particularly important resource of these studies is connected with developing techniques of 
sepermonodispersive selection of cavities. In the present project we started developing such 
techniques and achieved uniformity ~0.1%. These results can be radically improved on the basis 
of massively parallel manipulation of cavities guided by the spectroscopy. These techniques 
should result in developing next generation of photonic devices based on supermonodispersive 
coupled cavities with reduced scattering losses. 
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